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ABSTRACT: An essential requirement for electrolytes in
rechargeable magnesium-ion (Mg-ion) batteries is to enable
Mg plating−stripping with low overpotential and high
Coulombic efficiency. To date, the influence of the Mg/
electrolyte interphase on plating and stripping behaviors is still
not well understood. In this study, we investigate the Mg/
electrolyte interphase from electrolytes based on two Mg salts
with weakly coordinating anions: magnesium monocarborane
( M g ( C B 1 1 H 1 2 ) 2 ) a n d m a g n e s i u m b i s -
(trifluoromethanesulfonyl)imide (Mg(TFSI)2). Cyclic vol-
tammetry and chronopotentiometry of Mg plating−stripping
demonstrate significantly lower overpotential in the Mg-
(CB11H12)2 electrolyte than in Mg(TFSI)2 under the same
condition. Surface characterizations including X-ray photoelectron spectroscopy and scanning electron microscopy clearly
demonstrate the superior chemical and electrochemical stability of the Mg(CB11H12)2 electrolyte at the Mg surface without
noticeable interphase formation. On the other hand, characterizations of the Mg/electrolyte interface in the Mg(TFSI)2
electrolyte indicate the formation of magnesium oxide, magnesium sulfide, and magnesium fluoride as the interfacial
compounds resulting from the decomposition of TFSI− anions because of both chemical reduction by Mg and cathodic
reduction during Mg deposition.
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■ INTRODUCTION

Rechargeable Mg-ion batteries have received increasing
attention as an energy storage technology beyond lithium-ion
batteries. However, the development of Mg-ion batteries is
hampered by the lack of high-capacity cathode materials and
limited options of Mg-ion electrolytes. The conventional Mg-
ion electrolytes are mainly based on the organo−haloaluminate
complex originating from the seminal works by Gregory et al.
in 19901 and Aurbach et al. in 2000.2 These electrolytes
typically contain a mixture of Grignard reagents (RMgCl or
R2Mg, R is the alkyl, aryl, or carboranyl group) and Lewis acids
(typically AlCl3),

3−7 thus suffering from low anodic stability
due to the nucleophilicity of the Grignard reagents.2,5

Therefore, non-Grignard electrolytes have been developed
including the magnesium aluminum chloride complex
(MgCl2−AlCl3),8−12 magnesium alkoxides [ROMgCl or Mg-
(OR)2],

13,14
fluorinated alkoxides,15 and amides such as

hexamethyldisilazide magnesium chloride (HMDSMgCl)16

and magnes ium bis(hexamethy ld i s i l az ide) (Mg-
(HMDS)2).

17−19 However, a majority of the reported
electrolytes still contain active chloride anions, which renders
these electrolytes corrosive, thus not compatible with battery
components.18 Therefore, the recent developments are more

focused on non-Grignard and halide-free (or the halide
sequestered in a polyatomic anion) electrolytes based on Mg
salts with weakly coordinating anions including borohydride,20

hexafluorophosphate,21 monocarborane ((CB11H12)
−),22,23

fluorinated alkoxyborate,24 and fluorinated alkoxyaluminate
anions.25,26

Among all the “simple” Mg salts, magnesium bis-
(trifluoromethanesulfonyl)imide (Mg(TFSI)2) is readily avail-
able and soluble in ethers, which are widely considered as the
only type of solvents compatible with Mg metal anodes.27,28

Therefore, its electrochemical properties have been the subject
of several investigations. The early studies suggest that Mg
could not be deposited from acetonitrile solution of Mg-
(TFSI)2 because of the reduction of acetonitrile at a potential
of −0.2 V versus Mg,29 while the ethereal Mg(TFSI)2 solutions
seemed capable of reversible Mg plating−stripping, however,
with an inferior overpotential.30−32 The theoretical inves-
tigations on Mg(TFSI)2 indicated that the ion pairing between
partially reduced Mg2+ cations (to Mg+) and TFSI−, facilitating
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the cathodic decomposition of TFSI− anions on the electrode
surface.33 On the contrary, Mg(CB11H12)2, developed
independently by Tutusaus et al.22 and McArthur et al.23 in
2015, was demonstrated as one of the best Mg salts for Mg-ion
electrolytes with excellent anodic stability and low plating−
stripping overpotential. The opposite electrochemical proper-
ties of the Mg(TFSI)2 and Mg(CB11H12)2 electrolytes seem to
originate from their different interfacial mechanisms. However,
the Mg/electrolyte interphase in these electrolytes are not well
understood, particularly for Mg(CB11H12)2. Therefore, in this
study, we aim to obtain the direct information on their
interfacial behaviors and interphase compositions through a
systematic investigation.

■ EXPERIMENTAL SECTION
Preparation of Electrolytes. All manipulations were carried out

using standard Schlenk or glovebox techniques under a nitrogen or
argon atmosphere unless otherwise stated. Mg(CB11H12)2 was
prepared by the method of McArthur et al.23 Tetraethylene glycol
dimethyl ether (G4) (>99%, Sigma-Aldrich) was distilled over sodium
metal under inert conditions on the Schlenk-line and stored with
molecular sieves until electrolyte solution was mixed. Mg(TFSI)2 salt
(Solvionic, 99.5%) was dried inside a tube furnace at 180 °C under
vacuum in an argon (Ar)-filled glovebox for 48 h. The preparation of
both electrolytes was conducted inside the Ar-filled glovebox. Water
content of G4 and the electrolytes were measured with a Karl Fischer
titrator.
Electrochemical Analyses and Material Characterizations.

Cyclic voltammetry (CV) and chronopotentiometry of Mg plating−
stripping were performed with the three-electrode setup inside the Ar-
filled glovebox. The standard platinum working electrode (3 mm
disk) was used in the CV experiments. Copper (Cu) foils (Lyon
Industries) were used in the Mg deposition experiments. Cu foils were
cleaned by soaking in 2.0 M sulfuric acid (Fisher Chemicals) for 3
days. The soaked Cu foils were sonicated three times for 5 min each
in anhydrous ethanol (Sigma-Aldrich), and the dried Cu foils were
stored in the Ar-filled glovebox for use. Mg foil was used as the
electrode in the chemical compatibility study and the Mg-stripping
experiments. The Mg foil was polished with 1200 and 2500 grit sand
papers inside the glovebox and then washed with anhydrous G4
before use. Scanning electron microscopy (SEM) and energy-
dispersive X-ray spectroscopy (EDS) was performed on Nova
NanoSEM 450. Samples were carefully washed with G4 and
tetrahydrofuran inside the glovebox before being mounted on the
sample stubs. To perform X-ray photoelectron spectroscopy (XPS),
samples were transferred from the glovebox via sealed stainless steel
transfer tubes to the XPS facility. XPS experiments were conducted
with Kratos Axis Supra with a dual anode Al/Ag monochromatic X-
ray source. The samples were transferred into the analysis chamber via
the integrated glovebox filled with inert gas.

■ RESULTS AND DISCUSSION

Owing to the insolubility of Mg(CB11H12)2 in lower glymes,
we selected G4 as the solvent for both Mg(CB11H12)2 and
Mg(TFSI)2. The concentration of the Mg(TFSI)2 electrolyte is
0.5 M, which is close to the highest concentration that can be
achieved in G4 at room temperature (Figure S1 in Supporting
Information). The concentration of the Mg(CB11H12)2
electrolyte is 0.75 M, which is selected for its optimal
conductivity as demonstrated by Tutusaus and co-workers.22

The higher concentration of the Mg(CB11H12)2 electrolyte
should not fundamentally alter its interfacial mechanism,
which is the focus of this study. Indeed, electrochemical
analyses indicate that the 0.5 M Mg(CB11H12)2 electrolyte
demonstrates almost identical behaviors as the 0.75 M
electrolyte does in CV, Mg deposition, and chronopotentiom-
etry experiments (Figure S2 in Supporting Information).
Figure 1 shows the selected CV cycles of Mg plating−stripping
in 0.5 M Mg(TFSI)2 and 0.75 M Mg(CB11H12)2 electrolytes at
50 mV s−1 with the Pt working electrode, Mg counter
electrode, and Mg reference electrode in the three-electrode
setup. The Coulombic efficiency (CE) of the plating−stripping
process over 50 cycles was calculated from the CV curves and
shown as the inset. The water content in both electrolytes was
8 ppm measured with the Karl Fischer titration. The
Mg(CB11H12)2 electrolyte demonstrates low plating over-
potential at −0.5 V versus Mg2+/Mg in the first cycle, which
was further lowered to −0.35 V on subsequent cycles. The Mg-
stripping potential is at 0 V versus Mg2+/Mg, thus resulting in a
small plating−stripping potential hysteresis. On the other
hand, although the Mg(TFSI)2 electrolyte indeed displays a
pair of reversible redox peaks, corresponding to Mg plating−
stripping, the overpotentials are very high: −0.9 V for plating
and 2.1 V for stripping versus Mg2+/Mg. Furthermore, the CE
of Mg plating−stripping in the Mg(CB11H12)2 electrolyte is
stabilized at approximately 97% over the course of 50 cycles. In
comparison, the CE of Mg plating−stripping in the Mg(TFSI)2
electrolyte is well below 40% during 50 cycles. Despite the
different concentration of these two electrolytes, we speculate
the significantly different overpotential and CE are due to
their different Mg/electrolyte interphase formation mecha-
nisms during the Mg plating−stripping process.
To study the interphase formation during Mg plating,

chronopotentiometry depositions (Figure S3 in Supporting
Information) were performed in both electrolytes at a current
density of 1 mA cm−2 for a period of 12 h on a Cu electrode.
The X-ray diffraction (XRD) patterns (Figure S4 in Supporting
Information) confirm the deposition of Mg metal from both

Figure 1. Representative CV scans and CE of Mg plating−stripping in (a) 0.75 M Mg(CB11H12)2 and (b) 0.5 M Mg(TFSI)2 in G4 at 50 mV s−1 at
room temperature.
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electrolytes. The SEM images in Figure 2a,b at different
magnifications display uniform Mg deposition from the
Mg(CB11H12)2 electrolyte. The digital image inset clearly
shows that the deposited Mg metal has a metallic gray color
and smooth surface. On the contrary, the Mg deposited from
the Mg(TFSI)2 electrolyte has a distinctly different appearance
and micromorphology. As depicted in the digital image inset in
Figure 2c, the Mg deposited from the Mg(TFSI)2 electrolyte is
aggregated black particles on the Cu substrate. The SEM
images in Figure 2c,d verify that the Mg deposition from the
Mg(TFSI)2 electrolyte indeed is composed by particles instead
of smooth deposition. The micromorphology of Mg from the
Mg(TFSI)2 electrolyte is consistent with the Mg deposition
previously reported by Ha et al. from Mg(TFSI)2 in
monoglyme and diglyme.27

To understand the stark contrast of Mg deposits from these
two electrolytes, EDS and XPS were used to identify the
surface composition of the deposited Mg. The EDS elemental

mapping of the Mg surface deposited from the Mg(CB11H12)2
electrolyte (Figure 3a) displays the strong presence of Mg and
oxygen. The corresponding Mg 2p XPS spectrum (Figure 3b)
consistently indicates that the Mg-containing species on the
surface includes metallic Mg and magnesium oxide (MgO).
Considering the absence of oxygen atoms in the Mg-
(CB11H12)2 salt and good resistance of G4 to electrochemical
reduction, we believe that the MgO layer is due to the
oxidation from the environment. It is also worth noting that
the XPS technique only probes a very thin surface layer of a
few nanometers. Therefore, the composition ratio shown in the
Mg 2p XPS spectrum does not correlate to the actual content
of MgO in the deposited Mg. Strong evidence for the stability
of the Mg(CB11H12)2 electrolyte also comes from the B 1s and
C 1s XPS spectra on the Mg surface shown in Figure 3c,d. The
B 1s XPS spectrum shows the B−B and B−C bonds, which are
consistent with the pristine Mg(CB11H12)2 salt (Figure S5 in
Supporting Information), resulting from the salt residue on the

Figure 2. SEM images at different magnifications of Mg deposited on the Cu substrate from (a,b) Mg(CB11H12)2 and (c,d) Mg(TFSI)2 electrolytes
with constant current at 1 mA cm−2 for 12 h at room temperature. Insets are the digital images of Mg deposited on Cu.

Figure 3. (a) SEM image of Mg deposited from the Mg(CB11H12)2 electrolyte with EDS elemental mapping; (b) Mg 2p, (c) B 1s, and (d) C 1s
XPS spectra of the deposited Mg surface.
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Mg surface. The C 1s XPS spectrum shows the signal from the
adventitious carbon (C−C, C−O−C, and O−CO bonds)
from the environmental contamination and the C−B bond
from salt residue without indication of G4 decomposition.
In stark contrast to the excellent stability of the Mg-

(CB11H12)2 electrolyte, analyses of the surface of Mg deposited
from the Mg(TFSI)2 electrolyte clearly indicate severe
passivation layer formation. The EDS elemental mapping in
Figure 4a displays surface composition including Mg, oxygen,
fluorine, and sulfur. The Mg 2p XPS spectrum in Figure 4b
shows Mg bonds from magnesium sulfide (MgS) and MgO
(binding energy of Mg in these two compounds are very close)
and magnesium fluoride (MgF2) without indication of metallic
Mg. The F 1s XPS spectrum in Figure 4c confirms the
existence of MgF2 and compounds containing C−F bonds on
the surface of Mg deposited from Mg(TFSI)2. Similarly, the S
2p XPS spectrum in Figure 4d indicates the existence of MgS
and sulfur−oxygen bonds, which can be attributed to the
sulfonyl group from the electrolyte residue and/or sulfite
(SO3

2−) and dithionite (S2O4
2−) anions from the decom-

position of TFSI− anions.31,34 The C 1s XPS spectrum in

Figure 4e only shows peaks from the adventitious carbon in
consistent with the C 1s spectrum from the Mg(CB11H12)2
electrolyte, indicating that the G4 solvent is stable.
The EDS and XPS results in Figure 4 lead to the conclusion

that the passivation layer is formed during Mg deposition in
the Mg(TFSI)2 electrolyte via TFSI− anion reduction. Rajput
et al. through their theoretical investigation33 proposed that
the proneness of TFSI− anions to reduction is due to a
transient ion pair of Mg+−TFSI− from partial reduction of
Mg2+ cations. The proposed electrochemical decomposition
mechanism of the TFSI− anion is shown in the Supporting
Information (Scheme S1). Yu et al. proposed that TFSI−

anions could chemically decompose by the nucleophilic attack
from the free OH− anions induced by water content in the
electrolyte.35 It is also known that metallic Mg is capable of
reducing C−F, N−S, and SO bonds,36,37 thus it is not
surprising that the similar decomposition occurs electrochemi-
cally for TFSI− anions. It is unlikely that the monocarborane
anion decomposes chemically in the presence of metallic Mg
because we prepare the electrolyte in high purity and yield via
a Mg reduction. Therefore, to prove that the TFSI− anion

Figure 4. (a) SEM image of Mg deposited from the Mg(TFSI)2 electrolyte with EDS elemental mapping; (b) Mg 2p, (c) F 1s, (d) S 2p, and (e) C
1s XPS spectra of the deposited Mg surface.

Figure 5. (a) SEM image and (b) Mg 2p XPS spectrum of the Mg surface soaked in the Mg(CB11H12)2 electrolyte and (c) SEM image and (d) Mg
2p, (e) F 1s, and (f) S 2p XPS spectra of the Mg surface soaked in the Mg(TFSI)2 electrolyte.
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specifically degrades in the presence of Mg metal anodes and
the monocarborane anion does not, we investigated the
chemical compatibility of Mg metal in both Mg(CB11H12)2 and
Mg(TFSI)2 electrolytes. After being soaked in the Mg-
(CB11H12)2 electrolyte for 14 days, no visible change can be
observed on the Mg surface (Figure S6 in Supporting
Information). Figure 5a displays the SEM image of the soaked
Mg surface with no indication of morphology change. The Mg
2p XPS spectrum of the soaked Mg surface (Figure 5b) shows
metallic Mg and MgO from the native oxide on the surface.
(The native MgO layer cannot be completely removed by
polishing as shown in the Mg 2p XPS spectrum of the polished
Mg in Figure S6.) The EDS spectrum in Figure S7 (Supporting
Information) also evidences no composition change after
soaking in the Mg(CB11H12)2 electrolyte. On the other hand,
the Mg electrode soaked in the Mg(TFSI)2 electrolyte
demonstrates visible color change from metal gray to black
as shown in Figure S8 in the Supporting Information. Clear
surface morphological change (pitting-like) can be observed in
the SEM image in Figure 5c. The EDS spectrum in Figure S9
in the Supporting Information clearly shows surface com-
pounds containing significant amounts of O, F, and S elements.
The XPS spectra of Mg 2p, F 1s, and S 2p (Figure 5d−f) show
very similar results to those on the Mg surface electrochemi-
cally deposited from the Mg(TFSI)2 electrolyte. The XPS
spectra are strong evidence that TFSI− anions can be
chemically reduced by Mg metal.
The distinctly different chemical stability of Mg(CB11H12)2

and Mg(TFSI)2 with Mg metal (i.e., different interfacial
compositions) results in very different behaviors of Mg
stripping. As shown in Figure 6a,b, the Mg stripping at 1
mA cm−2 in the Mg(CB11H12)2 electrolyte demonstrates a very
low overpotential of 0.05 V versus Mg. On the contrary, the
Mg stripping with the same current density in the Mg(TFSI)2
electrolyte demonstrates a significantly higher overpotential at
1.4 V versus Mg. This high overpotential of Mg stripping could
contribute to the previous observation that Mg−S two-
electrode cells using the Mg(TFSI)2 electrolyte in monoglyme
failed to demonstrate discharging capacity.38,39 The interphase
on the Mg electrode also impacts the behavior of Mg plating
following the stripping process as displayed in Figure 6c. Mg
plating after stripping in the Mg(CB11H12)2 electrolyte shows a
modest overpotential of −0.25 V versus Mg; on the other
hand, Mg plating after stripping in Mg(TFSI)2 shows a high
overpotential of −0.5 V versus Mg with a considerably high
potential overshoot. The EDS and XPS analysis of the Mg
surfaces after stripping and replating (Figures S10−S13 in
Supporting Information) show consistent results with the
analyses described above: the Mg surface in the Mg(CB11H12)2
electrolyte is virtually interphase-free and the one in the

Mg(TFSI)2 electrolyte contains oxide, sulfide, and fluoride
compounds.

■ CONCLUSIONS
Through systematic electrochemical analyses and microscopic
and spectroscopic characterizations, we have demonstrated
superior Mg plating−stripping performance of the Mg-
(CB11H12)2 electrolyte in comparison with Mg(TFSI)2. Such
excellent electrochemical performance of Mg(CB11H12)2 can
be unambiguously attributed to the superb chemical and
electrochemical stability at the Mg/electrolyte interface. Our
results indicate that virtually, no interphase formation occurs
during Mg plating because of the cathodic stability of the
(CB11H12)

− anion. On the contrary, we also demonstrate that
Mg(TFSI)2 is an inferior salt for the Mg-ion electrolyte
because of its severe passivation layer formation, which occurs
both chemically and electrochemically due to the reduction of
the TFSI− anion. Mg(TFSI)2 may only be a feasible salt for
Mg-ion electrolytes with proper Mg anode protection as
demonstrated by Ban and co-workers.40 Undoubtedly, Mg-
(CB11H12)2 is one of the most Mg-compatible salts for Mg-ion
electrolytes to date.
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